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Using a simple phenomenological approach, we calculate the percolation threshold for Bruggeman compos-
ites having microgeometry of two kinds. Both kinds of composites consist of spheroids whose shape follows
the Beta distribution. At the same time, the first one is a mixture of spheroids equally oriented along their
revolution axis. In this case the percolation threshold is shown to be the same as for an assembly of equally
oriented identical spheroids whose shape corresponds to the most probable shape of the distribution. For such
composites the percolation threshold can vary between 0 and 1. The second one is a random mixture of the
spheroids. In this case the percolation threshold is expressed in terms of the Gauss hypergeometric function; it
is shown to vary between 0 and 1/3. The derived analytical results are supplemented with numerical calcula-
tions carried out for different values of the Beta distribution parameters.
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Percolation is important to develop a basic understanding
of microgeometry-(morphology-) property relationships in
heterogeneous materials(composites). In particular, the per-
colation threshold is an important parameter characterizing
heterogeneous systems of various types. However, although
the percolation theory is a well developed branch in the
theory of the heterogeneous systems and critical phenomena,
there is still a great deal to learn about relationship between
the microgeometry of composites and the percolation thresh-
old.

There are several approaches to describe the microgeom-
etry of random composites. The advantages and disadvan-
tages of various methods of composite media characteriza-
tion are considered in the review[1]. We note that, among
others, an approach based on the statistical correlation func-
tions [2] appears to be quite useful and to have considerable
promise. Many researchers employ computer simulation to
describe percolation properties of various materials(see, e.g.,
[3–5]). Generally, many results of the percolation theory are
derived using the simulation(see, e.g.,[2,6–10] and refer-
ences therein). Other techniques, such as network mapping
and renormalization, are apparently of limited application.
Anyway, consideration of size- and shape-distributed particle
systems involves great difficulties. In this report, we develop
a simple phenomenological approach allowing one to obtain
analytical estimations for the percolation threshold of com-
posites of a special type possessing the so-called Bruggeman
microgeometry.

It is well known that percolation has a strong influence on
transport. On the other hand, if the effective transport coef-
ficients are wanted, for two-phase composites they can be
expressed in terms of the spectral representation[11]. The
latter signifies the microgeometry of the composites. In spe-
cific cases(for specific microgeometries) a number of effec-
tive medium theories exist for the effective transport coeffi-
cients. Here we deal with Bruggeman(symmetrical)
composites. For such composites, all components(phases)

are symmetrical in the statistical sense. This means that an
interchange of any two phases results in the same type of
composite but with interchanged volume fractions.

The Bruggeman composite is one in which each sphere
(ellipsoid) is surrounded by a mixture of the two phases
which has the effective value for the composite. To fill the
space up, the spheres(ellipsoids) must have an infinite range
in size. In the more general case, the ellipsoids are also shape
distributed. In Ref.[12], an approach is proposed to describ-
ing such composites based on introducing shape-distribution
functions. The main objective of this paper is to find the
percolation threshold for the composites. So we refine on and
supplement the previous work[12].

First of all, we remark that in two dimensions(2D) our
problem has a trivial solution and the exact percolation
threshold can be determined by a straightforward argument
[13]. Indeed, as was noted above, the original system and
“conjugate” system(obtained by interchanging the roles of
conducting and insulating areas) are statistically equivalent.
This means that if the conductor percolates atpc, then the
insulator percolates as its volume fraction is 1−pc. Because
in 2D the percolation path of one phase blocks the percola-
tion of the other; the point at which one phase first percolates
and that at which the other phase last percolates are the same.
It immediately follows thatpc=1/2 for Bruggeman compos-
ites in 2D.

Let us now consider the generalized Bruggeman equation
in 3D. For equally oriented shape-distributed spheroids(el-
lipsoids of revolution), if the electric field is directed along
the revolution axis, it is of the form[12]

o
i

piE
0

1

dL
PsLd
si + L

= 0, s1d

with the ith phase volume fractionpi, the spheroid depolar-
ization factorL corresponding to the direction of its revolu-
tion axis, a positive shape-distribution functionPsLd, and the
spectral variablessi =sef f/ ssi −sef fd, wheresi and sef f are
the conductivities of theith phase and the effective medium,
respectively. Because each integral in Eq.(1) can be consid-*Email address: avg@isp.kiev.ua
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ered as the averaged spheroid polarizability, this equation
means that the total polarization along the revolution axis
must vanish. In this case the two-phase composite undergoes
percolation transition at the critical pointp2;p=pc if the
equation

E
0

1

dL PsLdGsLd = 0 s2d

holds; here

GsLd =
L − pc

LsL − 1d
. s3d

Generally, the integral equation(2) possesses many solu-
tions. In other words, many functions exist which are or-
thogonal to the kernelGsLd on [0, 1]. At the same time, it is
clear that the form of the distribution function has a deter-
mining effect on the percolation properties of the composite.
In the subsequent development, however, we restrict our at-
tention to a Beta distribution case. So we take

PsLd = PBsLd = CLa−1s1 − Ldb−1, s4d

where C=Gsa+bd /GsadGsbd=1/Bsa ,bd is the normaliza-
tion constant,Gs d is the gamma function, andBs d is the Beta
function. Besides, we take herea.1, b.1. There are sev-
eral reasons for this choice. First of all, the Beta distribution
is the simplest two-parameter distribution which seems to be
physically feasible. Unlike the widely used steplike distribu-
tion [12,14–19], it is smooth. In a sense, the Beta distribution
defined on[0,1] is of the same importance as the Gauss one
defined onf−` , +`g. In addition, if a.1, b.1 then the
distribution has a peak; it is easy to check that it occurs at

L * =
a − 1

a + b − 2
. s5d

This means that a most probable shape exists for each phase.
By varying the relationship betweena and b, we can vary
this shape over wide limits, from long needles to flat disks.
At the same time, ifL→0 or L→1 thenPsLd→0. So infi-
nitely long needles and infinitely thin disks are absent in the
system under consideration. Mathematically, this allows one
to determine the nontrivial percolation threshold for the gen-
eralized Bruggeman equation. As an illustration, general
view of the Beta distribution for this case is presented
in Fig. 1.

It was noted in our previous work[12] that the choice of
the Beta distribution for Bruggeman composites does not

yield a nontrivial percolation threshold. However, as we shall
see below, this statement is not exactly correct, namely, if
a.1, b.1 then a nontrivial percolation threshold exists.

Let us substitute Eqs.(3) and(4) into Eq.(2). As a result,
one has

E
0

1

dL La−1s1 − Ldb−2 = pcE
0

1

dL La−2s1 − Ldb−2. s6d

This equation can be rewritten as[20]

Bsa,b − 1d = pcBsa − 1,b − 1d, s7d

or as

GsadGsb − 1d
Gsa + b − 1d

= pc
Gsa − 1dGsb − 1d

Gsa + b − 2d
. s8d

Then, using the relationshipGsx+1d=xGsxd, one obtains the
needed equation for the percolation threshold,

pc = s1 + gd−1 s9d

whereg=sb−1d / sa−1d. Comparing this with Eq.(5) we can
see that

pc = L * . s10d

It is worth mentioning that the same percolation threshold
corresponds to the choice of the distribution function in the
form of the Dirac delta function,PsLd=PdsLd=dsL−L* d
[12] and is in line with that obtained from different generali-
zations of the Bruggeman theory[21]. On the other hand, it
is well known that when the variance of the Beta distribution
tends to zero, the distribution, in its turn, tends to the Dirac
delta function. This means that in contrast to the steplike
distribution [12] allowance for the smearing of the delta
function in this model does not change the percolation
threshold. IfL* →0 then the spheroids degenerate into infi-
nite parallel cylinders, and we obtain the trivial resultpc
→0. If L* →1 then the spheroids degenerate into parallel
flat disks, the problem becomes one dimensional, and the
percolation becomes impossible.

Consider now the case when the spheroids are randomly
distributed. Then for the spheroids of a fixed shape the
Bruggeman equation reads(see, e.g.,[22])

o
i

pio
j=1

3

ssi + Ljd−1 = 0 s11d

where we have to take into account thatL1=L ,L2=L3=s1
−Ld /2. If the spheroids are shape distributed, Eq.(11) should
be rewritten as

o
i

pi E dL PsLdo
j=1

3

ssi + Ljd−1 = 0. s12d

It can easily be seen that in this case the kernel of Eq.(2) is

GsLd =
pc

L
+

5pc − 1

1 − L
−

4s1 − pcd
1 + L

. s13d

Substituting Eqs.(13) and (4) into Eq. (2), one has

FIG. 1. General view of the Beta distribution(4) at a=2.
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pc
a + b − 1

a − 1
Bsa,bd + s3pc − 1d

a + b − 1

b − 1
Bsa,bd

− 4s1 − pcdE
0

1

dL
La−1s1 − Ldb−1

1 + L
= 0. s14d

Using the integral representation for the hypergeometric
function 2F1 [20], Eq. (14) may be rewritten as

pc
a + b − 1

a − 1
+ s3pc − 1d

a + b − 1

b − 1

− 4s1 − pcd2F1sa,1;a + b;− 1d = 0. s15d

This yields the chosen equation for the percolation threshold

pc =

a + b − 1

b − 1
+ 42F1sa,1;a + b;− 1d

5
a + b − 1

b − 1
+

a + b − 1

a − 1
+ 42F1sa,1;a + b;− 1d

.

s16d

If the variance of the Beta distribution,DsLd=ab / sa
+bd2sa+b+1d, tends to zero, then the distribution tends to
the Dirac delta function. Thus, whena ,b→` we may write

PsLd = PdsLd = dsL − L * d. s17d

Substituting Eqs.(17) and(13) into Eq.(2) gives after simple
algebra the well known result(see, e.g., Ref.[22])

pc > L
5 − 3L

1 + 9L
, s18d

where we have dropped the superscript nearL. As is easy to
see from Eq.(18), pcsLd peaks atL=Lmax=1/3; the peak
value of the percolation threshold in this case ispcsLmaxd
=1/3.

In Fig. 2, there are shown the isolinesfc=const calculated
according to Eq.(16) as a function ofa andb. One can see

that, generally, the percolation threshold can vary between 0
and 1/3. We note that most of the known 3D composites
percolate within this range[12]. At the same time, two sa-
lient regions can be distinguished, 0,pc,0.2 and
0.2,pc,1/3. The first region is inherent in elongated sphe-
roids, whensa−1d / sb−1d!1. The distinctive feature of this
region is a monotonic decrease of the percolation threshold
asb→` or a→1. As to the second region, the dependence
pcsad is nonmonotonic. We note also that ifa→` or
b→` then the isolines approach the straight lines

a − 1

b − 1
=

Lc

1 − Lc
, s19d

where

Lc =
1

6
f5 − 9pc ± Îs5 − 9pcd2 − 12pcg s20d

is a solution of the quadratic equation(18) (here the sign
“1” corresponds toa→` and the sign “2” corresponds to
b→`). Besides, ifb→1 then Lc→1 (this corresponds to
flat disks) andpc→0.2.

Of course, it is vital to know for which composites the
generalized Bruggeman equation(12) holds. We must admit
that up to now this question is, generally, unclear and is,
hence, open for further consideration. At the same time, Eq.
(12) has, undoubtedly, a considerably wider area of applica-
tions than the much used classical Bruggeman equation. A
simple example of a system of the first kind, evidently, is the
flow of insoluble liquids or freezing of these liquids/melt
flow. As to 3D isotropic composites, sandstones, for ex-
ample, are formed from particles with a variety of shapes and
sizes [23]. In ceramics processing and metallurgy, a wide
range of materials are formed by sintering powders of poly-
disperse nonspherical particles[24]. Particular examples are
conductor-insulator composites prepared by mixing and
compressing initial fine powders[25] and by coprecipitation

FIG. 2. Curvespcsa ,bd=const computed ac-
cording to Eq.(16).
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of solid solutions[26]. It is likely that many of these com-
posites whose phases may be treated on an equal basis may
be considered as Bruggeman-like ones.

Finally, it should be noted that, although a great body of
percolation simulation data exists, a quantitative comparison
of our results and the data is difficult due to the specificity of
the Bruggeman microgeometry. Nevertheless, we hope that
our theoretical results will prompt more simulation work.

In summary, we have considered the problem of finding
the percolation threshold of two-phase Bruggeman-like com-
posites of two kinds consisting of spheroids whose shape

adheres to the Beta distribution. The first kind of distribution
is an (anisotropic) system of parallel spheroids oriented
along their revolution axis. We have shown that for such
composites the percolation threshold does not depend on the
dispersion of the distribution. It is determined by the position
of the distribution mode only and can vary from 0 to 1. The
second kind of composite is a system of randomly oriented
spheroids. In this case the percolation threshold depends on
the distribution dispersion and can vary from 0 to 1/3. To
illustrate the results obtained, the isolinespc=const are cal-
culated as a function of the distribution parameters.
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